1. Introduction

- **Problem:** Traditional attention mechanisms in image captioning models usually assume one-to-one mapping from image regions to caption words, which is impossible.
 - visual information forcibly given to non-visual words;
 - hard to understand interactions between objects;
 - earlier decoding steps have less knowledge of the image.

- **Solution:** We propose Adaptive Attention Time (AAT), which allows adaptive alignment for image captioning and can address all these issues.
 - an image region can be mapped to an arbitrary number of caption words (from zero to multiple); and vice versa.

With AAT,
 - an image region can be mapped to an arbitrary number of caption words (from zero to multiple); and vice versa.

2. Method

- **Confidence network:** measures how confident the decoder currently is to output a word
 \[p_{n} = \begin{cases} \sigma(\max(h_{n}^i, W_{1} + b_{1} + b_{1})) & n = 0 \\ \sigma(\max(h_{n}^i, W_{1} + b_{1} + b_{2} + b_{2})) & n > 0 \end{cases} \]

- **Attention time (steps):** determined by the confidence
 \[N(t) = \min(M_{max}, \min\{n': \prod_{i=0}^{n-1}(1-p_{i}^{n}) < c\}) \]

- **Final output:** average of all attention steps
 \[\begin{align*}
 h_{n}^i &= \beta_{n}h_{n}^i + \sum_{j=1}^{N(N(t))} \beta_{j}h_{j}^i, \\
 m_{n}^i &= \beta_{n}m_{n}^i + \sum_{j=1}^{N(N(t))} \beta_{j}m_{j}^i, \\
 \beta_{n} &= \begin{cases} 1 & n = 0 \\ \prod_{i=0}^{n-1}(1-p_{i}^{n}) & n > 0 \end{cases}
 \end{align*} \]

- **Time cost penalty:** encourages to take fewer attention steps
 \[L_{t} = \ell(N(t)) \sum_{n=1}^{N(N(t))} (1-p_{i}^{n}) \]

3. Results

Table 1: Attention Model (Time)

<table>
<thead>
<tr>
<th>Att Model</th>
<th>Time</th>
<th>Cider-D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base</td>
<td>1.23</td>
<td>123.76</td>
</tr>
<tr>
<td>Recurrent</td>
<td>2.12</td>
<td>124.22</td>
</tr>
<tr>
<td>Adaptative (0-4)</td>
<td>2.55</td>
<td>126.48</td>
</tr>
</tbody>
</table>

Table 2: Time Cost Penalty

<table>
<thead>
<tr>
<th>Att Type</th>
<th>Head(s)</th>
<th>Time</th>
<th>Cider-D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addictive</td>
<td>1</td>
<td>2.54</td>
<td>126.76</td>
</tr>
<tr>
<td>Recurrent</td>
<td>1-3</td>
<td>1.03</td>
<td>125.76</td>
</tr>
<tr>
<td>Dot-Product</td>
<td>1-3</td>
<td>2.54</td>
<td>126.76</td>
</tr>
<tr>
<td>Adaptive (0-4)</td>
<td>2.55</td>
<td>126.48</td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Attention Heads

<table>
<thead>
<tr>
<th>Att Type</th>
<th>Head(s)</th>
<th>Time</th>
<th>Cider-D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addictive</td>
<td>1</td>
<td>2.54</td>
<td>126.76</td>
</tr>
<tr>
<td>Recurrent</td>
<td>1-3</td>
<td>1.03</td>
<td>125.76</td>
</tr>
<tr>
<td>Dot-Product</td>
<td>1-3</td>
<td>2.54</td>
<td>126.76</td>
</tr>
<tr>
<td>Adaptive (0-4)</td>
<td>2.55</td>
<td>126.48</td>
<td></td>
</tr>
</tbody>
</table>

Figure 2: Attention time at different decoding steps

AAT demonstrates the best performance while requires relatively little attention time.

Figure 3: Comparisons with state-of-the-arts

- **Additive**
 - BLEU: 20.09
 - ROUGE: 23.52
 - METEOR: 22.56
 - CIDEr: 22.24
- **GRU**
 - BLEU: 17.84
 - ROUGE: 22.52
 - METEOR: 21.76
 - CIDEr: 21.88
- **Attention Based (Anderson et al. 2018)**
 - BLEU: 17.59
 - ROUGE: 22.34
 - METEOR: 21.26
 - CIDEr: 21.22
- **Additive**
 - BLEU: 21.50
 - ROUGE: 24.32
 - METEOR: 23.19
 - CIDEr: 23.13

Code available at: https://github.com/husthuaan/AAT